Pharma Focus Europe

RZNOMICS Inc. received FDA approval to initiate clinical development of trans-splicing ribozyme-based RNA editing technology in Glioblastoma Multiforme Patients

Saturday, May 20, 2023

Rznomics Inc., a South Korea based biopharmaceutical company specialized in the development of RNA-based gene therapeutics, recently received Phase 1/2a IND approval from the U.S FDA on May 6th for its Glioblastoma Multiforme (GBM) treatment called RZ-001 and thus has achieved an important milestone for the company and the RNA editing field. RZ-001 initially obtained the IND approval with the indication for HCC, but Rznomics also found the great pre-clinical efficacy in GBM models and submitted the IND for the GBM. Being the first U.S. FDA-approved ribozyme-based RNA reprogramming approach to be evaluated in patients, RZ-001, a gene therapy approach utilizing the company's proprietary trans-splicing ribozyme-based RNA reprogramming and editing technology, is a replication-incompetent adenoviral vector that expresses an hTERT targeting ribozyme with multiple additional MoA to treat GBM patients.

The trans-splicing ribozyme is derived from the self-splicing Tetrahymena group I intron, which both recognizes and reprograms the target RNA into the therapeutic transcript of interest. Ribozyme-based RNA editing technology developed by Rznomics has unique features, differentiating it from other nucleic acid-based editing approaches, as follows: (1) A single RNA molecule is catalytically capable of both suppressing target RNA expression and simultaneously expressing a therapeutic RNA. Thus, no potentially antigenic proteins or cofactors are required. (2) Safety can be improved by selectively inducing therapeutic RNA expression only in cells/tissues where the target gene is expressed. (3) Therapeutic gene expression can be regulated proportionally to endogenous cellular target RNA levels. (4) Editing occurs at the RNA level, not the genomic level, thus eliminating concerns about genomic toxicity and eternal genome changes. (5) Indications with multiple mutation sites scattered throughout a target RNA can be edited with a single RNA designed to react upstream of all mutations and by replacing and editing large stretches of RNA. (6) Additional safety can be conferred by building control mechanisms into the ribozyme itself, without the need to modulate intrinsic cellular mechanisms or external proteins. 

More specifically, RZ-001 engenders effective anti-GBM activity by suppressing hTERT expression selectively in cancer cells, which over-express hTERT, and simultaneously inducing a cytotoxic effect by trans ligating an HSVtk-encoding sequence into the reprogrammed hTERT mRNA. Moreover, the result of such editing efficiently induces immune cell infiltrations into GBM tumors and hampers angiogenesis in the tumor tissues in preclinical animal models. (http://www.rznomics.com/pipeline/RZ-001.php). The Phase 1/2a clinical trial will be a dose escalation/expansion study to assess the safety and tolerability of RZ-001 and to determine the most effective dose with the least toxicities of RZ-001 in recurrent GBM patients without extracranial metastases. 

"It's a monumental achievement of Rznomics that RZ-001, the first trans-splicing ribozyme therapy at the front of our therapeutic pipeline, has successfully received another IND approval in the United States with the indication for the GBM. I am really grateful that RZ-001 earned the opportunity to potentially fulfill the unmet needs of GBM patients. Through the advanced development phase, I hope Rznomics can provide more new therapeutic options to patients suffering from intractable diseases. Rznomics will further expand our pipeline by targeting indications with highly unmet medical needs for which the unique characteristics of our platform technology may be the most competitively applied," said Dr. Seong-Wook Lee, Ph.D., CEO, and founder of Rznomics.

magazine-slider-img
Thermo Fisher Scientific - mRNA ServicesWorld Orphan Drug Congress 2024World Vaccine Congress Europe 2024Advanced Therapies USA 2024
cytiva